Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Sci ; 25(2): e30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568831

RESUMO

BACKGROUND: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.


Assuntos
Quitosana , Nanopartículas , Animais , Staphylococcus epidermidis/genética , Nanogéis , Gelatina/farmacologia , Quercetina/farmacologia , Biofilmes , Quitosana/farmacologia , Quitosana/química , Gelatinases/farmacologia , Antibacterianos/farmacologia
2.
Langmuir ; 40(9): 4860-4870, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394629

RESUMO

Tildipirosin has no significant inhibitory effect on intracellular bacteria because of its poor membrane permeability. To this end, tildipirosin-loaded xanthan gum-gelatin composite nanogels were innovatively prepared to improve the cellular uptake efficiency. The formation of the nanogels via interactions between the positively charged gelatin and the negatively charged xanthan gum was confirmed by powder X-ray diffraction and Fourier transform infrared. The results indicate that the optimal tildipirosin composite nanogels possessed a 3D network structure and were shaped like a uniformly dispersed ellipse, and the particle size, PDI, and ζ potential were 229.4 ± 1.5 nm, 0.26 ± 0.04, and -33.2 ± 2.2 mV, respectively. Interestingly, the nanogels exhibited gelatinase-responsive characteristics, robust cellular uptake via clathrin-mediated endocytosis, and excellent sustained release. With those pharmaceutical properties provided by xanthan gum-gelatin composite nanogels, the anti-Staphylococcus aureus activity of tildipirosin was remarkably amplified. Further, tildipirosin composite nanogels demonstrated good biocompatibility and low in vivo and in vitro toxicities. Therefore, we concluded that tildipirosin-loaded xanthan gum-gelatin composite nanogels might be employed as a potentially effective gelatinase-responsive drug delivery for intracellular bacterial infection.


Assuntos
Gelatina , Gelatinases , Polissacarídeos Bacterianos , Tilosina/análogos & derivados , Nanogéis , Gelatina/química
3.
J Vet Sci ; 25(1): e18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311330

RESUMO

Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Bovinos , Feminino , Animais , Mastite Bovina/diagnóstico , Indústria de Laticínios , Fazendas , Leite
4.
Front Vet Sci ; 10: 1255239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876633

RESUMO

Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.

5.
Int J Biol Macromol ; 253(Pt 6): 127248, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802431

RESUMO

In this study, enrofloxacin (ENR) was encapsulated by oxidized hyaluronic acid (OHA) containing aldehyde groups and chitosan oligosaccharide (COS) containing amino groups through Schiff's base reaction to achieve on-demand release in the micro-environment (pH 5.5 and HAase) of bacterial-infected wounds (Escherichia coli and Staphylococcus aureus). The formation mechanism, physicochemical characterization, responsive release performance, in vitro and in vivo antimicrobial activities, and in vivo regeneration in full-thickness wounds in a bacterial-infected mouse model of the ENR nanogels were systematically studied. According to the single-factor experiment and Design-Expert software, the optimized formula was 3.8 mg/ml COS, 0.5 mg/ml OHA, and 0.3 mg/ml ENR, respectively. The mean particle diameter, polydispersity index, zeta potential, loading capacity, and encapsulation efficiency were 35.6 ± 1.7 nm, -6.7 ± 0.5 mV, 0.25 ± 0.02, 30.4 % ± 1.3 %, and 76.3 % ± 2.6 %, respectively. The appearance, optical microscopy images, SEM, TEM, PXRD, and FTIR showed that the ENR nanogels were successfully prepared. The ENR nanogels exhibited obvious pH and HAase-responsiveness by swelling ratios and in vitro release and had stronger antibacterial activity with time-dependent and concentration-dependent effects, as well as accelerating infected wound healing. In vitro and in vivo biosafety studies suggested the great promise of ENR nanogels as biocompatible wound dressings for infected wounds.


Assuntos
Quitosana , Infecção dos Ferimentos , Camundongos , Animais , Nanogéis , Enrofloxacina , Ácido Hialurônico/química , Quitosana/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Oligossacarídeos/farmacologia
6.
Front Cell Infect Microbiol ; 13: 1139796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234778

RESUMO

Introduction: Biofilm formation is the major pathogenicity of Staphylococcus epidermidis (S. epidermidis), which enhances bacterial resistance to antibiotics. Isookanin has potential inhibitory activity on biofilm. Method: The inhibiting mechanisms of isookanin against biofilm formation through surface hydrophobicity assay, exopolysaccharides, eDNA, gene expression analysis, microscopic visualization, and molecular docking were explored. Additionally, the combination of isookanin and ß-lactam antibiotics were evaluated by the broth micro-checkerboard assay. Results: The results showed that isookanin could decrease the biofilm formation of S. epidermidis by ≥85% at 250 µg/mL. The exopolysaccharides, eDNA and surface hydrophobicity were reduced after treatment with isookanin. Microscopic visualization analysis showed that there were fewer bacteria on the surface of the microscopic coverslip and the bacterial cell membrane was damaged after treatment with isookanin. The down-regulation of icaB and up-regulation of icaR were observed after treatment with isookanin. Additionally, the RNAIII gene was significantly up-regulated (p < 0.0001) at the mRNA level. Molecular docking showed that isookanin could bind to biofilm-related proteins. This indicated that isookanin can affect biofilm formation at the initial attachment phase and the aggregation phase. The FICI index showed that the combination of isookanin and ß-lactam antibiotics were synergistic and could reduce doses of antibiotics by inhibiting biofilm formation. Discussion: This study improved the antibiotic susceptibility of S. epidermidis through inhibition of the biofilm formation, and provided a guidance for the treatment of antibiotic resistance caused by biofilm.


Assuntos
Antibacterianos , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Regulação para Baixo , Simulação de Acoplamento Molecular , Biofilmes , Monobactamas/metabolismo , Testes de Sensibilidade Microbiana
7.
Int J Biol Macromol ; 242(Pt 3): 125084, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245769

RESUMO

In order to overcome the treatment difficulty of Lawsonia intracellularis (L.intracellularis) using antibiotics, the tilmicosin (TIL)-loaded sodium alginate (SA)/gelatin composite nanogels modified with bioadhesive substances were designed. The optimized nanogels were prepared by electrostatic interaction between SA and gelatin at a mass ratio of 1:1 and CaCl2 as an ionic crosslinker and further modified with guar gum (GG). The optimized TIL-nanogels modified with GG had a uniform spherical shape with a diameter of 18.2 ± 0.3 nm, LC of 29.4 ± 0.2 %, EE of 70.4 ± 1.6 %, PDI of 0.30 ± 0.04, and ZP of -32.2 ± 0.5 mv. The FTIR, DSC, and PXRD showed that GG was covered on the surface of TIL-nanogels in a pattern of staggered arrangements. The TIL-nanogels modified with GG had the strongest adhesive strength amongst those with I-carrageenan and locust bean gum and the plain nanogels, and thus significantly enhanced the cellular uptake and accumulation of TIL via clathrin-mediated endocytosis. It exhibited an increased therapeutic effect against L.intracellularis in vitro and in vivo. This study will provide guidance for developing nanogels for intracellular bacterial infection treatment.


Assuntos
Enterite , Gastroenterite , Lawsonia (Bactéria) , Animais , Suínos , Nanogéis , Gelatina , Alginatos , Enterite/microbiologia
8.
Curr Drug Deliv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650649

RESUMO

Background This study aimed to improve the sustained and controlled release of glycyrrhizic acid to the infected site of Staphylococcus aureus small colony variants (SCVs). Methods The glycyrrhizic acid-loaded chitosan composite nanogel was prepared by inclusion action, Schiff's base formation, and electrostatic action. Furthermore, the formulation screening, characteristics, in vitro release, and antibacterial activity of the glycyrrhizic acid composite nanogel were explored. Results The final optimal formula comprised 10 mg/mL (chitosan) and 50 µL (glutaraldehyde). The loading capacity, encapsulation efficiency, mean size, polydispersity index, and zeta potential were 8.8%±1.6%, 92.1%±2.8%, 478.3±2.8 nm, 0.37±0.10, and 25.3±3.6 mv, respectively. Scanning electron microscope images showed a spherical shape with a relatively uniform distribution. The in vitro release study showed that glycyrrhizic acid composite nanogel exhibited a biphasic pattern with a sustained release of 52.1%±2.0% at 48 h in the pH 5.5 PBS. The minimum inhibitory and minimum biofilm inhibitory concentrations of glycyrrhizic acid composite nanogel against SCVs were 0.625 µg/mL. The time-killing curves and live/dead bacterial staining showed that glycyrrhizic acid composite nanogel had a stronger curative effect against SCVs strain with concentration-dependent. Conclusion This study provides promising glycyrrhizic acid composite nanogel to improve the treatment of SCV infection.

9.
Curr Drug Deliv ; 20(9): 1327-1336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35570556

RESUMO

BACKGROUND: The development of nanogels has become an attractive strategy to enhance the antibacterial activity performance of bacteria. METHODS: The ciprofloxacin composite nanogels were successfully prepared by electrostatic interaction between gelatin (positive charge) and CMC (negative charge) with the help of sodium tripolyphosphate (TPP) as ionic crosslinkers, to increase the antibacterial activity of ciprofloxacin against Staphylococcus aureus (S. aureus) mastitis infection. The formulation screening, characterization, in vitro release, antibacterial activity, and biosafety were studied. RESULTS: The optimized formulation was fabricated of 20 mg/mL (CMC) and 50mg/mL (gelatin). The optimized ciprofloxacin composite nanogels were homogenous canary yellow suspension with a sedimentation rate of 1 and were incorporated in nano-sized cross-linked polymeric networks. The particle sizes were distributed as, 402.7±1.3 nm, PDI of 0.12±0.01, ZP of -24.5±0.2mv, EE of 74.28%±0.03%, LC of 20.5%±0.05%. Scanning electron microscope images revealed that ciprofloxacin might be incorporated in nano-sized cross-linked polymeric networks. Fourier transform infrared showed that the spontaneous electrostatic interactions between CMC and gelatin produce the network structure and form the composite nanogels. Meanwhile, in vitro release study showed that ciprofloxacin composite nanogels had sustained-release performances. The ciprofloxacin composite nanogels had shown better antibacterial activity against SCV 102 isolate than S. aureus ATCC 29213 and S. aureus 101isolates. The biosafety studies suggested the great promise of the injectable ciprofloxacin composite nanogels as a biocompatible breast injection. CONCLUSION: This study will afford a potential approach for developing injectable ciprofloxacin-loaded gelatin-CMC composite nanogels for cow S. aureus mastitis therapy.


Assuntos
Ciprofloxacina , Staphylococcus aureus , Feminino , Animais , Bovinos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Nanogéis , Gelatina/química , Carboximetilcelulose Sódica , Antibacterianos/farmacologia , Antibacterianos/química , Sódio
10.
Animals (Basel) ; 12(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230443

RESUMO

Enrofloxacin has a poor palatability and causes strong gastric irritation; the oral formulation of enrofloxacin is unavailable, which limits the treatment of Escherichia coli (E. coli) infections via oral administration. To overcome the difficulty in treating intestinal E. coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)-sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was explored. The formulation screening, characteristics, pH-responsive performance in gastric juice and the intestinal tract, antibacterial effects, therapeutic effects, and biosafety level of the enrofloxacin composite nanogels were investigated. The optimized concentrations of COS, SA, CaCl2, and enrofloxacin were 8, 8, 0.2, and 5 mg/mL, respectively. The encapsulation efficiency, size, loading capacity, zeta potential, and polydispersity index of the optimized formulation were 72.4 ± 0.8%, 143.5 ± 2.6 nm, 26.6 ± 0.5%, -37.5 ± 1.5 mV, and 0.12 ± 0.07, respectively. Scanning electron microscopy images revealed that enrofloxacin-loaded nanogels were incorporated into the nano-sized cross-linked networks. Fourier transform infrared spectroscopy showed that the nanogels were prepared by the electrostatic interaction of the differently charged groups (positive amino groups (-NH3+) of COS and the negative phenolic hydroxyl groups (-COO-) of SA). In vitro, pH-responsive release performances revealed effective pH-responsive performances, which can help facilitate targeted "on-demand" release at the target site and ensure that the enrofloxacin has an ideal stability in the stomach and a responsive release in the intestinal tract. The antibacterial activity study demonstrated that more effective bactericidal activity against E. coli could have a better treatment effect than the enrofloxacin solution. Furthermore, the enrofloxacin composite nanogels had great biocompatibility. Thus, the enrofloxacin composite core-shell nanogels might be an oral intelligent-responsive preparation to overcome the difficulty in treating intestinal bacterial infections.

11.
J Vet Sci ; 23(5): e78, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36174982

RESUMO

BACKGROUND: Florfenicol might be ineffective for treating Staphylococcus aureus small colony variants (SCVs) mastitis. OBJECTIVES: In this study, florfenicol-loaded chitosan (CS)-sodium tripolyphosphate (TPP) composite nanogels were prepared to allow targeted delivery to SCV infected sites. METHODS: The formulation screening, the characteristics, in vitro release, antibacterial activity, therapeutic efficacy, and biosafety of the florfenicol composite nanogels were studied. RESULTS: The optimized formulation was obtained when the CS and TPP were 10 and 5 mg/mL, respectively. The encapsulation efficiency, loading capacity, size, polydispersity index, and zeta potential of the optimized florfenicol composite nanogels were 87.3% ± 2.7%, 5.8% ± 1.4%, 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively. Optical and scanning electron microscopy showed that spherical particles with a relatively uniform distribution and drugs might be incorporated in cross-linked polymeric networks. The in vitro release study showed that the florfenicol composite nanogels exhibited a biphasic pattern with the sustained release of 72.2% ± 1.8% at 48 h in pH 5.5 phosphate-buffered saline. The minimal inhibitory concentrations of commercial florfenicol solution and florfenicol composite nanogels against SCVs were 1 and 0.25 µg/mL, respectively. The time-killing curves and live-dead bacterial staining showed that the florfenicol composite nanogels were concentration-dependent. Furthermore, the florfenicol composite nanogels displayed good therapeutic efficacy against SCVs mastitis. Biological safety studies showed that the florfenicol composite nanogels might be a biocompatible preparation because of their non-toxic effects on the renal tissue and liver. CONCLUSIONS: Florfenicol composite nanogels might improve the treatment of SCV infections.


Assuntos
Quitosana , Mastite , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Quitosana/farmacologia , Preparações de Ação Retardada , Feminino , Mastite/veterinária , Nanogéis , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Tianfenicol/análogos & derivados
12.
J Vet Sci ; 23(3): e48, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35618320

RESUMO

BACKGROUND: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). OBJECTIVES: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. METHODS: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. RESULTS: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 µg/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. CONCLUSIONS: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.


Assuntos
Doenças dos Bovinos , Mastite , Alginatos/farmacologia , Animais , Antibacterianos/farmacologia , Cloreto de Cálcio , Bovinos , Enrofloxacina/farmacologia , Feminino , Gelatina/química , Mastite/veterinária , Nanogéis , Staphylococcus aureus
13.
J Vet Sci ; 23(1): e1, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34931502

RESUMO

BACKGROUND: The poor bioadhesion capacity of tilmicosin resulting in treatment failure for Staphylococcus aureus small colony variants (SASCVs) mastitis. OBJECTIVES: This study aimed to increase the bioadhesion capacity of tilmicosin for the SASCVs strain and improve the antibacterial effect of tilmicosin against cow mastitis caused by the SASCVs strain. METHODS: Tilmicosin-loaded chitosan oligosaccharide (COS)-sodium carboxymethyl cellulose (CMC) composite nanogels were formulated by an electrostatic interaction between COS (positive charge) and CMC (negative charge) using sodium tripolyphosphate (TPP) (ionic crosslinkers). The formation mechanism, structural characteristics, bioadhesion, and antibacterial activity of tilmicosin composite nanogels were studied systematically. RESULTS: The optimized formulation was comprised of 50 mg/mL (COS), 32 mg/mL (CMC), and 0.25 mg/mL (TPP). The size, encapsulation efficiency, loading capacity, polydispersity index, and zeta potential of the optimized tilmicosin composite nanogels were 357.4 ± 2.6 nm, 65.4 ± 0.4%, 21.9 ± 0.4%, 0.11 ± 0.01, and -37.1 ± 0.4 mV, respectively; the sedimentation rate was one. Scanning electron microscopy showed that tilmicosin might be incorporated in nano-sized crosslinked polymeric networks. Moreover, adhesive studies suggested that tilmicosin composite nanogels could enhance the bioadhesion capacity of tilmicosin for the SASCVs strain. The inhibition zone of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels were 2.13 ± 0.07, 3.35 ± 0.11, and 1.46 ± 0.04 cm, respectively. The minimum inhibitory concentration of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels against the SASCVs strain were 2, 1, and 1 µg/mL, respectively. The in vitro time-killing curves showed that the tilmicosin composite nanogels increased the antibacterial activity against the SASCVs strain. CONCLUSIONS: This study provides a potential strategy for developing tilmicosin composite nanogels to treat cow mastitis caused by the SASCVs strain.


Assuntos
Antibacterianos , Staphylococcus aureus/efeitos dos fármacos , Tilosina/análogos & derivados , Animais , Antibacterianos/farmacologia , Carboximetilcelulose Sódica , Bovinos , Quitosana , Feminino , Mastite Bovina/tratamento farmacológico , Nanogéis , Oligossacarídeos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Tilosina/farmacologia
14.
J Vet Pharmacol Ther ; 45(1): 133-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34435681

RESUMO

The mortality of livestock caused by pathogenic Escherichia coli (E. coli) still accounts for a large proportion of deaths in large-scale production and reproduction, which causes devastating economic losses to the pig breeding industry. The aims of this study were to investigate the antibacterial activity of combined aditoprim (ADP) and sulfamethoxazole (SMZ) against clinical isolates of E. coli from pigs and to develop a pharmacokinetic-pharmacodynamic (PK-PD) model to formulate the optimal dose of ADP/SMZ for the treatment of pig colibacillosis. Blood and ileum fluid samples were collected at different times after single intramuscular injection of ADP/SMZ (5/25 mg/kg b.w.) to healthy pigs and E. coli-infected pigs. Concentrations of ADP and SMZ in plasma and ileum fluid were analyzed by HPLC. The peak concentration (Cmax ) and the area under the concentration-time curve (AUC0-24h ) in ileum fluid of healthy pigs were 1.76 ± 0.27 µg/ml and 18.92 ± 2.87 µg·h/ml for ADP and 19.15 ± 2.63 µg/ml and 125.70 ± 11.86 µg·h/ml for SMZ, respectively. Cmax and AUC0-24h in ileum fluid of infected pigs were 1.88 ± 0.13 µg/ml and 15.12 ± 0.75 µg·h/ml for ADP and 19.71 ± 3.68 µg/ml and 133.92 ± 17.14 µg·h/ml for SMZ, respectively. The minimum inhibitory concentrations (MICs) of combined ADP and SMZ (ADP/SMZ) against 185 strains of E. coli from pigs were determined. The MIC50 and MIC90 of ADP/SMZ were 0.5/2.5 and 4/20 µg/ml, respectively. The MIC of the selected pathogenic E. coli SHC28 was 0.5/2.5 µg/ml in Mueller-Hinton broth and 0.25/1.25 µg/ml in ileum fluid, respectively. In vitro, the mutant prevention concentration, the post-antibiotic effect, growth, and time-killing curves in vitro and ex vivo of ADP/SMZ against the isolate SHC28 were assayed for PD studies. The results showed that ADP/SMZ exhibited strong concentration-dependent antimicrobial activity against E. coli. After integrating the in vivo pharmacokinetic parameters of infected pigs and ex vivo PD data using the sigmoid Emax (Hill) equation, the AUC24h /MIC values in ileum fluid for bacteriostatic, bactericidal, and bacterial eradication were 18.84, 65.39, and 110.68 h, respectively. In conclusion, a dosage of 3.45/17.25 mg/kg ADP/SMZ by intramuscular injection daily for 3 consecutive days may be sufficient to treat swine colibacillosis due to E. coli with a MIC of 0.5/2.5 µg/ml.


Assuntos
Escherichia coli , Doenças dos Suínos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Sulfametoxazol , Suínos , Doenças dos Suínos/tratamento farmacológico , Trimetoprima/análogos & derivados
15.
J Vet Sci ; 22(6): e41, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34854264

RESUMO

BACKGROUND: Our previously prepared ceftiofur (CEF) hydrochloride oily suspension shows potential wide applications for controlling swine Streptococcus suis infections, while the irrational dose has not been formulated. OBJECTIVES: The rational dose regimens of CEF oily suspension against S. suis were systematically studied using a pharmacokinetic-pharmacodynamic model method. METHODS: The healthy and infected pigs were intramuscularly administered CEF hydrochloride oily suspension at a single dose of 5 mg/kg, and then the plasma and pulmonary epithelial lining fluid (PELF) were collected at different times. The minimum inhibitory concentration (MIC), minimal bactericidal concentration, mutant prevention concentration (MPC), post-antibiotic effect (PAE), and time-killing curves were determined. Subsequently, the area under the curve by the MIC (AUC0-24h/MIC) values of desfuroylceftiofur (DFC) in the PELF was obtained by integrating in vivo pharmacokinetic data of the infected pigs and ex vivo pharmacodynamic data using the sigmoid Emax (Hill) equation. The dose was calculated based on the AUC0-24h/MIC values for bacteriostatic action, bactericidal action, and bacterial elimination. RESULTS: The peak concentration, the area under the concentration-time curve, and the time to peak for PELF's DFC were 24.76 ± 0.92 µg/mL, 811.99 ± 54.70 µg·h/mL, and 8.00 h in healthy pigs, and 33.04 ± 0.99 µg/mL, 735.85 ± 26.20 µg·h/mL, and 8.00 h in infected pigs, respectively. The MIC of PELF's DFC against S. suis strain was 0.25 µg/mL. There was strong concentration-dependent activity as determined by MPC, PAE, and the time-killing curves. The AUC0-24h/MIC values of PELF's DFC for bacteriostatic activity, bactericidal activity, and virtual eradication of bacteria were 6.54 h, 9.69 h, and 11.49 h, respectively. Thus, a dosage regimen of 1.94 mg/kg every 72 h could be sufficient to reach bactericidal activity. CONCLUSIONS: A rational dosage regimen was recommended, and it could assist in increasing the treatment effectiveness of CEF hydrochloride oily suspension against S. Suis infections.


Assuntos
Cefalosporinas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis , Animais , Cefalosporinas/farmacocinética , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Infecções Estreptocócicas/tratamento farmacológico , Suínos
16.
Int J Biol Macromol ; 173: 445-456, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497691

RESUMO

In order to solve the antibiotic resistance, the research on antibiotic substitutes has received an extensive attention. Many studies have shown that ß-glucan and mannan from yeast cell wall have the potential to replace antibiotics for the prevention and treatment of animal diseases, thereby reducing the development and spread of antibiotic-resistant bacterial pathogens. ß-Glucan and mannan had a variety of biological functions, including improving the intestinal environment, stimulating innate and acquired immunity, adsorbing mycotoxins, enhancing antioxidant capacity, and so on. The biological activities of ß-glucan and mannan can be improved by chemically modifying its primary structure or reducing molecular weight. In this paper, the structure, preparation, modification, and biological activities of ß-glucan and mannan were reviewed, which provided future perspectives of ß-glucan and mannan.


Assuntos
Fungos/química , Mananas/química , beta-Glucanas/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Parede Celular/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Mananas/farmacologia , beta-Glucanas/farmacologia
17.
Curr Drug Deliv ; 18(2): 224-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32885750

RESUMO

OBJECTIVE: A ceftiofur hydrochloride long-acting oily suspension with no irritation was prepared by testing and optimizing the types and amounts of organic solvents, suspending agents, and surfactants. METHODS: Its properties, stability, injection site irritation, in vitro release, and pharmacokinetics in pigs were evaluated. The optimum formulation was used ethyl oleate, aluminum monosterate, and span-80 as organic solvents, suspending agents, and surfactant, respectively. The drug microparticles were uniform long strip with size of 1.53 ± 0.11 µm and no agglomerations, and were evenly dispersed. The re-dispersed time, sedimentation rate and pH value of the suspension were 4 s under a magnetic shaker rotating at 20 r/min, 1 and 5.0, respectively. It could go through 7-gage needle smoothly with withdrawal volume of 9.9 mL/min. RESULTS: The suspension showed good stability when stored away from light, no irritation at the injection site and sustained release in PBS buffer. After intramuscular administration, the drug concentration above 0.15 µg/mL was last for 120 h. Its elimination half-life (T1/2ke), mean residence time (MRT), and bioavailability were increased by 1.73, 1.62, and 2.16 times compared to Excenel®. CONCLUSION: The results suggested that the suspension had excellent sustained-release and will make ceftiofur hydrochloride more effective and convenient to use.


Assuntos
Antibacterianos , Cefalosporinas , Animais , Disponibilidade Biológica , Injeções Intramusculares , Suspensões , Suínos
18.
Carbohydr Polym ; 252: 117162, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183613

RESUMO

In order to overcome treatment difficulty of S. aureus infections, a pH/hyaluronidase dual responsive enrofloxacin-cyclodextrin (ß-CD) inclusion complexes (IC) containing hyaluronic acid/chitosan (HA/CS) self-assemble composite nanosystems covered by poloxamer 188 (F68) was firstly explored for targeted "on-demand" delivery. The FTIR, DSC and PXRD showed that enrofloxacin was embedded into IC and then distributed into F68 coating nanogels formulated by electrostatic interaction between CS and HA. The optimal nanosystems of 118.8 ± 30.7 nm showed excellent stability and responsive release in the acid medium, hyaluronidase containing medium, and LB broth medium where S. aureus present. The nanosystems displayed strong surface adsorption on S. aureus and enhanced activity against S. aureus. It had stronger sustained release than the polymeric nanoparticles formulated by entrapping of IC into F68 and the single HA/CS nanogels. This study provides a promising multi-functionalized nanosystems to overcome the treatment challenge of S. aureus and other bacterial infections.


Assuntos
Antibacterianos/farmacologia , Ciclodextrinas/farmacologia , Enrofloxacina/farmacologia , Nanogéis/química , Staphylococcus aureus/efeitos dos fármacos , Quitosana/química , Quitosana/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Hialuronoglucosaminidase/metabolismo , Concentração de Íons de Hidrogênio , Nanogéis/uso terapêutico , Poloxâmero/química , Poloxâmero/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico
19.
Microb Pathog ; 147: 104389, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707311

RESUMO

In this study, the rational dose regimens of tilmicosin against Lawsonia intracellularis (L. intracellularis) were studied using pharmacokinetic-pharmacodynamic (PK-PD) model approach to provide a maximal efficacy. The healthy and infected pigs were orally administrated the tilmicosin premix at a single dose of 10 mg/kg, and then the plasma and ileum content were collected at different time points. The time to peak (Tmax), the peak concentration (Cmax), the area under concentration time curve (AUC0-24h), the apparent volume of distribution by bioavailability (V/F), the body clearance rate by bioavailability (CL/F) and the mean residence time (MRT) of tilmicosin premix for plasma were 2.00 h, 1.08 ± 0.04 µg/mL, 9.61 ± 1.47 µg h/mL, 34.43 ± 1.02 L/kg, 0.71 ± 0.03 L/h/kg and 15.03 ± 0.04 h in healthy pigs, and 2.00 h, 0.99 ± 0.03 µg/mL, 9.30 ± 1.43 µg h/mL, 58.59 ± 1.81 L/kg, 0.44 ± 0.02 L/h/kg and 15.75 ± 0.03 h in infected pigs, respectively. The Tmax, Cmax, AUC0-24h, V/F, CL/F and MRT of tilmicosin premix for ileum content were 2.00 h, 3.78 ± 0.03 µg/mL, 20.41 ± 1.64 µg h/mL, 11.29 ± 0.97 L/kg, 0.44 ± 0.02 L/h/kg and 11.29 ± 0.09 h in healthy pigs, and 2.00 h, 3.41 ± 0.06 µg/mL, 22.65 ± 1.32 µg h/mL, 8.16 ± 1.51 L/kg, 0.41 ± 0.01 L/h/kg and 11.44 ± 0.05 h in infected pigs, respectively. Based on the intracellular minimum inhibitory concentration (MIC) of L. intracellularis isolate was 2 µg/mL, the results of the mutant prevention concentration (MPC), the post-antibiotic effect (PAE) and time-killing curves all showed strong concentration-dependenttendencies. Integrating the in vivo pharmacokinetic data of infected pigs and ex vivo pharmacodynamic data using the sigmoid Emax (Hill) equation to obtain the ileum content AUC0-24h/MIC values of 6.87, 26.80, and 36.02 h to achieve the bacteriostatic activity, bactericidal activity, and virtual eradication of bacteria, respectively. Based on these results, a dosage regimen of daily 14.39 mg/kg for 3 d could be sufficient in the treatment of L. intracellularis. This study will provide a guidance of dosage regimen formulation for drug against animal intracellular bacterial infections.


Assuntos
Lawsonia (Bactéria) , Animais , Antibacterianos , Testes de Sensibilidade Microbiana , Suínos , Tilosina/análogos & derivados , Tilosina/farmacologia
20.
J Vet Sci ; 20(5): e40, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31565887

RESUMO

Misuse and abuse of veterinary antimicrobial agents have led to an alarming increase in bacterial resistance, clinical treatment failure, and drug residues. To address these problems, consistent and appropriate dosage regimens for veterinary antimicrobial agents are needed. Pharmacokinetics/Pharmacodynamics (PK/PD) models have been widely used to establish rational dosage regimens for veterinary antimicrobial agents that can achieve effective prevention and treatment of bacterial diseases and avoid the development of bacterial resistance. This review introduces building methods for PK/PD models and describes current PK/PD research progress toward rational dosage regimens for veterinary antimicrobial agents. Finally, the challenges and prospects of PK/PD models in the design of dosage regimens for veterinary antimicrobial agents are reviewed. This review will help to increase awareness of PK/PD modeling among veterinarians and hopefully promote its development and future use.


Assuntos
Animais Domésticos/metabolismo , Anti-Infecciosos/farmacologia , Medicina Veterinária/métodos , Animais , Anti-Infecciosos/farmacocinética , Relação Dose-Resposta a Droga , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...